Munch Lab

Current research

Our goal is to understand how mutation, selection and recombination together shape genetic variation, the evolution of genomes and the formation of new species. We develop and apply population genetic method on full genomes to address these questions in both living and ancestral species.

Read more…

Mix yourself a baboon

Just as when a new cocktail is invented by mixing old ingredients, evolution sometimes makes a brand new species by mixing old ones. One such remarkable example is the Kinda baboon (picture) that inhabits large parts of Angola, Zimbabwe, and Dem. rep. Congo. Two ancestral baboon species had followed separate evolutionary paths for about one and a half million years until they met only 150 thousand years ago and fused to create the Kinda baboon. This surprising finding is part of a study that we just published in Science Advances, as part of a large international collaboration with important contributions from the Mailund and Schierup labs at BiRC.

Read more…

Elephants and the mesh of life

The evolution and diversification of life are nicely depicted by a tree – with the original first living organism at the root and the main branches splitting into still smaller branches and twigs that eventually lead to the living species at the leaves. But what about all the species that went extinct, you may ask. The dinosaurs found themselves in dire straits 65 million years ago. In fact, species go extinct all the time. Whereas recently emerged species most likely persist, species that arose hundreds of million years ago have most likely gone extinct since then. This continuously removes twigs and branches from the tree of life, which is why it has ended up looking like, well, a tree.

Read more…

Waiting for good mutations

We know intuitively that individuals from small isolated populations are often more related with each than individuals in large populations are. Whereas closely related individuals have a shared relative in the recent past, distantly related individuals will have to look back many many generations to find such a common ancestor. This leaves more time for genomic mutations to produce differences between the two individuals, and this is why individuals from large populations show more differences between their genomes than individuals from a small one do.

Read more…

Selective sweeps across twenty million years of primate evolution

Our paper in MBE shows how patterns of incomplete lineage sorting measures linked selection on evolutionary timescales. We show that a large portion of linked selection is due to selective sweeps and that the human-chimpanzee ancestor experienced a substantially higher frequency of sweeps than did the human-orangutang ancestor. These ancestral sweeps are enriched for sweeps in modern humans suggesting that several regions of the genome are repeatedly hit by sweeps.

Link to paper